当前位置: X-MOL 学术Anal. Chim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation on CH4 Sensing Characteristics of Hierarchical V2O5 Nanoflowers Operated at Relatively Low Temperature using Chemiresistive Approach
Analytica Chimica Acta ( IF 6.2 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.aca.2020.01.060
Veena Mounasamy , Ganesh Kumar Mani , Dhivya Ponnusamy , Kazuyoshi Tsuchiya , P.R. Reshma , Arun K. Prasad , Sridharan Madanagurusamy

Methane (CH4) gas, the second most potent greenhouse gas share a substantial role in contributing to the global warming and it is a necessary pre-requisite to detect the release of CH4 into the environment at its early stage to combat climate change. In that front, this work is focussed to develop an effective CH4 gas sensor using vanadium pentoxide (V2O5) thin films that works at an operating temperature of ∼100 °C. To understand the effect of sputtering power towards the structural characteristics of V2O5 films, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) analysis were performed from which the orthorhombic polycrystalline structure of V2O5 thin films was confirmed with varied texture co-efficient. Further, the surface elemental studies using X-ray photoelectron spectroscopy (XPS) confirmed the prominence of V+5 oxidation state from the binding energy of V2p3/2 and O1s peak. The effect of sputtering power on the growth of different nanostructures were observed using field-emission scanning electron microscopy (FE-SEM). The critical role of adsorption and desorption kinetics of the deposited nanostructures were explained through first order kinetics based on Elovich model and the phase stability of different nanostructures were evaluated using Raman spectral analysis. This work achieved the sensor response of about ∼8% towards CH4 at an operating temperature of 100 °C towards 50 ppm concentration.

中文翻译:

使用化学电阻法研究在较低温度下运行的分层 V2O5 纳米花的 CH4 传感特性

甲烷 (CH4) 气体是第二强温室气体,在导致全球变暖方面发挥着重要作用,它是在早期检测 CH4 释放到环境中以应对气候变化的必要先决条件。在这方面,这项工作的重点是开发一种使用五氧化二钒 (V2O5) 薄膜的有效 CH4 气体传感器,其工作温度约为 100°C。为了了解溅射功率对 V2O5 薄膜结构特性的影响,进行了 X 射线衍射 (XRD) 和高分辨率透射电子显微镜 (HR-TEM) 分析,从中证实了 V2O5 薄膜的正交多晶结构不同的纹理系数。更多,使用 X 射线光电子能谱 (XPS) 的表面元素研究证实了 V+5 氧化态的显着性来自 V2p3/2 和 O1s 峰的结合能。使用场发射扫描电子显微镜(FE-SEM)观察溅射功率对不同纳米结构生长的影响。通过基于 Elovich 模型的一级动力学解释了沉积纳米结构的吸附和解吸动力学的关键作用,并使用拉曼光谱分析评估了不同纳米结构的相稳定性。这项工作在 100 °C 的操作温度下实现了对 CH4 约 8% 的传感器响应,浓度为 50 ppm。使用场发射扫描电子显微镜(FE-SEM)观察溅射功率对不同纳米结构生长的影响。通过基于 Elovich 模型的一级动力学解释了沉积纳米结构的吸附和解吸动力学的关键作用,并使用拉曼光谱分析评估了不同纳米结构的相稳定性。这项工作在 100 °C 的操作温度下实现了对 CH4 约 8% 的传感器响应,浓度为 50 ppm。使用场发射扫描电子显微镜(FE-SEM)观察溅射功率对不同纳米结构生长的影响。通过基于 Elovich 模型的一级动力学解释了沉积纳米结构的吸附和解吸动力学的关键作用,并使用拉曼光谱分析评估了不同纳米结构的相稳定性。这项工作在 100 °C 的操作温度下实现了对 CH4 约 8% 的传感器响应,浓度为 50 ppm。
更新日期:2020-04-01
down
wechat
bug